中心吸引系统参数?pso的参数选择

xfxzc.comc963 4 0

一、地球的基本参数

地球(Earth)

太阳系八大行星之一,国际名称为“该娅”(盖娅(Gaea),希腊神话中的大地之神,所有神灵中德高望重的显赫之神。是希腊神话中最早出现的神,在开天辟地时,由卡厄斯(Chaos)所生。她是宙斯的祖母,盖娅生了天空,天神乌拉诺斯(Ouranos or Uranus),并与他结合生了六男六女,十二个泰坦巨神及三个独眼巨人和三个百臂巨神,是世界的开始,而所有天神都是她的子孙后代。至今,西方人仍然常以“盖娅”代称地球。),按离太阳由近及远的次序数是第三颗。它有一颗天然的卫星---月球,二者组成一个天体系统---地月系统。

地球自西向东自转,同时又围绕太阳公转。地球自转与公转运动的结合使其产生了地球上的昼夜交替和四季变化(地球自转和公转的速度是不均匀的)。同时,由于受到太阳、月球、和附近行星的引力作用以及地球大气、海洋和地球内部物质的等各种因素的影响,地球自转轴在空间和地球本体内的方向都要产生变化。地球自转产生的惯性离心力使得球形的地球由两极向赤道逐渐膨胀,成为目前的略扁的旋转椭球体,极半径比赤道半径短约21千米。

阿波罗飞船在月球上看到地球是由一系列的同心层组成。地球内部有核(地核)、幔(地幔)、壳(地壳)结构。地球外部有水圈和大气圈,还有磁层,形成了围绕固态地球的美丽外套。

地球作为一个行星,远在56亿年以前产生于原始太阳星云。

地球的基本参数

扁率因子: 298.257

平均密度: 5.52克/厘米3

赤道半径: ae= 6378136.49米

极半径: ap= 6356755.00米

平均半径: a= 6371001.00米

赤道重力加速度: ge= 9.780327米/秒2

平均自转角速度:ωe= 7.292115× 10-5弧度/秒

扁率: f= 0.003352819

质量: M⊕= 5.9742×1024公斤

地心引力常数: GE= 3.986004418×1014米3/秒2

平均密度:ρe= 5.515克/厘米3

太阳与地球质量比: S/E= 332946.0

太阳与地月系质量比: S/(M+E)= 328900.5

公转时间: T= 365.2422天

离太阳平均距离: A= 1.49597870× 1011米

公转速度: v= 11.19公里/秒

表面温度: t=- 30~+45

表面大气压: p= 1013.250毫巴

表面重力加速度(赤道): 978.0厘米/秒2

表面重力加速度(极地): 983.2厘米/秒2

自转周期: 23时56分4秒(平太阳时)

公转轨道半长径: 149597870千米

公转轨道偏心率: 0.0167

公转周期: 1恒星年

黄赤交角: 23度26分

地球海洋面积: 361745300平方公里

地壳厚度: 80.465公里

地幔深度: 2808.229公里

地核半径: 3482.525公里

表面积: 510067866平方公里

人们对于地球的结构直到最近才有了比较清楚的认识。整个地球不是一个均质体,而是具有明显的圈层结构。地球每个圈层的成分、密度、温度等各不相同。在天文学中,研究地球内部结构对于了解地球的运动、起源和演化,探讨其它行星的结构,以至于整个太阳系起源和演化问题,都具有十分重要的意义。

地球各圈层结构

地球圈层分为地球外圈和地球内圈两大部分。地球外圈可进一步划分为四个基本圈层,即大气圈、水圈、生物圈和岩石圈;地球内圈可进一步划分为三个基本圈层,即地幔圈、外核液体圈和固体内核圈。此外在地球外圈和地球内圈之间还存在一个软流圈,它是地球外圈与地球内圈之间的一个过渡圈层,位于地面以下平均深度约150公里处。这样,整个地球总共包括八个圈层,其中岩石圈、软流圈和地球内圈一起构成了所谓的固体地球。对于地球外圈中的大气圈、水圈和生物圈,以及岩石圈的表面,一般用直接观测和测量的方法进行研究。而地球内圈,目前主要用地球物理的方法,例如地震学、重力学和高精度现代空间测地技术观测的反演等进行研究。地球各圈层在分布上有一个显著的特点,即固体地球内部与表面之上的高空基本上是上下平行分布的,而在地球表面附近,各圈层则是相互渗透甚至相互重叠的,其中生物圈表现最为显著,其次是水圈。

大气圈

大气圈是地球外圈中最外部的气体圈层,它包围着海洋和陆地。大气圈没有确切的上界,在2000~ 16000公里高空仍有稀薄的气体和基本粒子。在地下,土壤和某些岩石中也会有少量空气,它们也可认为是大气圈的一个组成部分。地球大气的主要成份为氮、氧、氩、二氧化碳和不到0.04%比例的微量气体。地球大气圈气体的总质量约为5.136×1021克,相当于地球总质量的百万分之0.86。由于地心引力作用,几乎全部的气体集中在离地面100公里的高度范围内,其中75%的大气又集中在地面至10公里高度的对流层范围内。根据大气分布特征,在对流层之上还可分为平流层、中间层、热成层等。

水圈

水圈包括海洋、江河、湖泊、沼泽、冰川和地下水等,它是一个连续但不很规则的圈层。从离地球数万公里的高空看地球,可以看到地球大气圈中水汽形成的白云和覆盖地球大部分的蓝色海洋,它使地球成为一颗"蓝色的行星"。地球水圈总质量为1.66×1024克,约为地球总质量的3600分之一,其中海洋水质量约为陆地(包括河流、湖泊和表层岩石孔隙和土壤中)水的35倍。如果整个地球没有固体部分的起伏,那么全球将被深达2600米的水层所均匀覆盖。大气圈和水圈相结合,组成地表的流体系统。

生物圈

由于存在地球大气圈、地球水圈和地表的矿物,在地球上这个合适的温度条件下,形成了适合于生物生存的自然环境。人们通常所说的生物,是指有生命的物体,包括植物、动物和微生物。据估计,现有生存的植物约有40万种,动物约有110多万种,微生物至少有10多万种。据统计,在地质历史上曾生存过的生物约有5-10亿种之多,然而,在地球漫长的演化过程中,绝大部分都已经灭绝了。现存的生物生活在岩石圈的上层部分、大气圈的下层部分和水圈的全部,构成了地球上一个独特的圈层,称为生物圈。生物圈是太阳系所有行星中仅在地球上存在的一个独特圈层。

岩石圈

对于地球岩石圈,除表面形态外,是无法直接观测到的。它主要由地球的地壳和地幔圈中上地幔的顶部组成,从固体地球表面向下穿过地震波在近33公里处所显示的第一个不连续面(莫霍面),一直延伸到软流圈为止。岩石圈厚度不均一,平均厚度约为100公里。由于岩石圈及其表面形态与现代地球物理学、地球动力学有着密切的关系,因此,岩石圈是现代地球科学中研究得最多、最详细、最彻底的固体地球部分。由于洋底占据了地球表面总面积的2/3之多,而大洋盆地约占海底总面积的45%,其平均水深为4000~5000米,大量发育的海底火山就是分布在大洋盆地中,其周围延伸着广阔的海底丘陵。因此,整个固体地球的主要表面形态可认为是由大洋盆地与大陆台地组成,对它们的研究,构成了与岩石圈构造和地球动力学有直接联系的"全球构造学"理论。

软流圈

在距地球表面以下约100公里的上地幔中,有一个明显的地震波的低速层,这是由古登堡在1926年最早提出的,称之为软流圈,它位于上地幔的上部即B层。在洋底下面,它位于约60公里深度以下;在大陆地区,它位于约120公里深度以下,平均深度约位于60~250公里处。现代观测和研究已经肯定了这个软流圈层的存在。也就是由于这个软流圈的存在,将地球外圈与地球内圈区别开来了。

地幔圈

地震波除了在地面以下约33公里处有一个显著的不连续面(称为莫霍面)之外,在软流圈之下,直至地球内部约2900公里深度的界面处,属于地幔圈。由于地球外核为液态,在地幔中的地震波S波不能穿过此界面在外核中传播。P波曲线在此界面处的速度也急剧减低。这个界面是古登堡在1914年发现的,所以也称为古登堡面,它构成了地幔圈与外核流体圈的分界面。整个地幔圈由上地幔(33~410公里深度的B层,410~1000公里深度的C层,也称过渡带层)、下地幔的D′层(1000~2700公里深度)和下地幔的D〃层(2700~2900公里深度)组成。地球物理的研究表明,D〃层存在强烈的横向不均匀性,其不均匀的程度甚至可以和岩石层相比拟,它不仅是地核热量传送到地幔的热边界层,而且极可能是与地幔有不同化学成分的化学分层。

外核液体圈

地幔圈之下就是所谓的外核液体圈,它位于地面以下约2900公里至5120公里深度。整个外核液体圈基本上可能是由动力学粘度很小的液体构成的,其中2900至4980公里深度称为E层,完全由液体构成。4980公里至5120公里深度层称为F层,它是外核液体圈与固体内核圈之间一个很簿的过渡层。

固体内核圈

地球八个圈层中最靠近地心的就是所谓的固体内核圈了,它位于5120至6371公里地心处,又称为G层。根据对地震波速的探测与研究,证明G层为固体结构。地球内层不是均质的,平均地球密度为5.515克/厘米3,而地球岩石圈的密度仅为2.6~3.0克/厘米3。由此,地球内部的密度必定要大得多,并随深度的增加,密度也出现明显的变化。地球内部的温度随深度而上升。根据最近的估计,在100公里深度处温度为1300°C,300公里处为2000°C,在地幔圈与外核液态圈边界处,约为4000°C,地心处温度为 5500~ 6000°C。

形状和大小

中国古代对天地的认识有所谓浑天说。东汉张衡在《浑天仪图注》里写道:“天体圆如弹丸,地如鸡中黄……天之包地犹壳之裹黄。”地球是圆的这个概念在远古就已模糊地存在了。723年唐玄宗派一行和南宫说等人,在今河南省选定同一条子午线上的 13个地点,测量夏至的日影长度和北极的高度,得到子午线一度之长为351里80步(唐代的度和长度单位)。折合现代的尺度就是纬度一度长132.3千米,相当于地球半径为7600千米,比现代的数值约大20%。这是地球尺度最早的估计(埃及人的测量更早一些,但观测点不在同一子午线上,而且长度单位核算标准不详,精度无从估计)。

精确的地形测量只是到了牛顿发现万有引力定律之后才有可能,而地球形状的概念也逐渐明确。地球并非是很规则的正球体。它的表面可以用一个扁率不大的旋转椭球面来极好地逼近。扁率e为椭球长短轴之差与长轴之比,是表示地球形状的一个重要参量。经过多年的几何测量、天文测量以至人造地球卫星测量,它的数值已经达到很高的精度。这个椭球面不是真正的地球表面,而是对地面的一个更好的科学概括,用来作为全球各地大地测量的共同标准,所以也叫做参考椭球面。按照这个参考椭球面,子午圈上一平均度是111.1千米,赤道上一平均度是111.3千米。在参考椭球面上重力势能是相等的,所以在它上面各点的重力加速度是可以计算的,公式如下:

g0=9.780318(1+0.0053024sin2j-0.0000059sin2j)米/秒2,式中g0是海拔为零时的重力加速度,j是地理纬度。知道了地球形状、重力加速度和万有引力常数G=6.670×10-11牛顿·米2/千克2,可以计算出地球的质量M为 5.976×1027克。

自转

由于地球转动的相对稳定性,人类生活历来都利用它作为计时的标准,简单地说,地球绕太阳公转一周的时间叫做一年,地球自转一周的时间叫做一日。然而由于地球外部和内部的原因,地球的转动其实是很复杂的。地球自转的复杂性表现在自转轴方向的变化和自转速率即日长的变化。

自转轴方向的变化中,最主要的是自转轴在空间绕黄道轴缓慢旋进,造成春分点每年向西移动50.256〃的岁差。这是日、月对地球赤道突出部分吸引的结果。其次是地球自转轴相对于地球本身的位置变化,造成了地面各点的纬度变化。这种变化主要有两种成分:一种以一年为周期,振幅约为0.09〃,是大气和海水等季节性变化所引起的,是一种强迫振动;另一种成分以14个月为周期,振幅约为0.15〃,是地球内部变化所引起的,叫做张德勒摆动,是一种自由振动。此外还有一些较小的自由振动。

转速的变化造成日长的变化。主要有3类:长期变化是减速的,使日长每百年增加1~ 2毫秒,是潮汐摩擦的结果;季节性变化最大可使日长变化0.6毫秒,是气象因素引起的;

不规则的短期变化,最大可使日长变化4毫秒,是地球内部变化的结果。

表面形态和地壳运动

地球的表面形态是极复杂的,有绵亘的高山,有广袤的海盆,还有各种尺度的构造。

地表的各种形态主要不是外力造成的,它们来源于地壳的构造运动。地壳运动的起因至少有以下几种设想:①地球的收缩或膨胀。许多地学家认为地球一直在冷却收缩,因而造成巨大的地层褶皱和断裂。然而观测表明,地面流出去的热量和地球内部因放射性物质的衰变而生出的热量是同量级的。也有人提出地球在膨胀的论据。这个问题现在尚无定论。②地壳均衡。在地壳以下的某一定深度,单位面积上的载荷有一种倾向于均等的趋势。地面上的巨大高差为地下深部横向物质流动所调节。③板块大地构造假说——地球最上层约八、九十千米厚的岩石层是由几块巨大的板块组成的。这些板块相互作用和相对运动就产生地面上一切大地构造现象。板块运动的动力来自何处,现在还不清楚,但不少人认为地球内部物质的对流起了决定性的作用。

电磁性质

地磁场并不指向正南。11世纪中国的《梦溪笔谈》就有记载。地磁偏角随地而异。真正地磁场的形态是很复杂的。它有显著的时间变化,最大的变化幅度可达到总地磁场的千分之几或更高。变化可分为长期的和短期的。长期变化来源于地球内部的物质运动;短期变化来源于电离层的潮汐运动和太阳活动的变化。在地磁场中,用统计平均或其他方法将短期变化消去后就得到所谓基本地磁场。用球谐分析的方法可以证明基本地磁场有99%以上来源于地下,而相当于一阶球谐函数部分约占80%,这部分相当于一个偶极场,它的北极坐标是北纬78.5°,西经69.0°。短期变化分为平静变化和干扰变化两大类。平静变化是经常出现的,比较有规律并有一定的周期,变化的磁场强度可达几十纳特;干扰变化有时是全球性的,最大幅度可达几千纳特,叫做磁暴。

基本磁场也不是完全固定的,磁场强度的图像每年向西漂移0.2°~0.3°,叫做西向漂移。这就指出地磁场的产生可能是地球内部物质流动的结果。现在普遍认为地球核主要是铁镍组成的(还包含少量的轻元素)导电流体,导体在磁场中运动便产生电流。这种电磁流体的耦合产生一种自激发电机的作用,因而产生了地磁场。这是当前比较最为人接受的地磁场成因的假说。

当岩浆在地磁场中降温而凝固成岩石时,便受到地磁场磁化而保留少许的永久磁性,称为热剩磁。大多数岩浆岩都带有磁性,其方向和成岩时的地磁场方向一致。由相同时代的不同岩石标本可以确定成岩时地球磁极的位置。但由不同地质时代的岩石标本所确定的地磁极位置却是不同的。这就给大陆漂移的假说提供了一个有力的证据。人们还发现,在某些地质时代成岩的岩石,磁化方向恰好和现代的地磁场方向相反。这是由于地球在形成之后,地磁场曾多次自己反向的结果。按照自激发电机地磁场成因假说,这种反向是可以理解的。地磁场的短期变化可以感应地下电流,而地下电流又引起地面的感应磁场。地下电流同地下物质的电导率有关,因而可由此估计地球内部的电导率分布。然而计算是复杂的,而且解答不单一。现在所能取得的一致意见是电导率随深度而增加,在60~100千米深度附近增加很快。在400~700千米的深处,电导率又有明显的变化,此处相当于地幔中的过渡层(又叫C层)。

温度和能源

地面从太阳接受的辐射能量每年约有10焦耳,但绝大部分又向空间辐射回去,只有极小一部分穿入地下很浅的地方。浅层的地下温度梯度约为每增加30米,温度升高1℃,但各地的差别很大。由温度梯度和岩石的热导率可以计算热流。由地面向外流出的热量,全球平均值约为6.27微焦耳/厘米秒,由地面流出的总热能约为10.032×1020焦耳/年。

地球内部的一部分能源来自岩石所含的放射性元素铀、钍、钾。它们在岩石中的含量近年来总在不断地修正,有人估计地球现在每年由长寿命的放射性元素所释放的能量约为9.614×1020焦耳,与地面热流很相近,不过这种估计是极其粗略的,含有许多未知因素。另一种能源是地球形成时的引力势能,假定地球是由太阳系中的弥漫物质积聚而成的。这部分能量估计有25×1032焦耳,但在积聚过程中有一大部分能量消失在地球以外的空间,有一小部分,约为1×1032焦耳,由于地球的绝热压缩而积蓄为地球物质的弹性能。假设地球形成时最初是相当均匀的,以后才演变成为现在的层状结构,这样就会释放出一部分引力势能,估计约为2×1030焦耳。这将导致地球的加温。地球是越转越慢的。地球自形成以来,旋转能的消失估计大约有1.5×1031焦耳,还有火山喷发和地震释放的能量,但其数量级都要小得多。

地面附近的温度梯度不能外推到几十千米深度以下。地下深处的传热机制是极其复杂的,由热传导的理论去估计地球内部的温度分布,常得不到可信的结果。但根据其他地球物理现象的考虑,地球内部某些特定深度的温度是可以估计的。结果如下:①在100千米的深度,温度接近该处岩石的熔点,约为1100~1200℃;②在400千米和650千米的深度,岩石发生相变,温度各约在1500℃和1900℃;③在核幔边界,温度在铁的熔点之上,但在地幔物质的熔点之下,约为3700℃;④在外核与内核边界,深度为5100千米,温度约为4300℃,地球中心的温度,估计与此相差不多。

内部结构

地球的分层结构基本上是按地震波( P和S)的传播速度划分的。地球上层有显著的横向不均匀性:大陆地壳和海洋地壳的厚度大不相同,海水只覆盖着2/3的地面。

地震时,震源辐射出两种地震波,纵波P和横波S。它们各以不同的速度向四围传播?经过不同的时间到达地面上不同的地点。若在地面上记录到P和S的传播时间随震中距离的变化,就可以推算地下不同深度地震波的传播速度υp和υs。

地球内部的分层就是由地震波速度分布定义的,在海水之下,地球最上层叫做地壳,厚约几十千米。地壳以下直对地核,这部分统称为地幔。地幔内部又有许多层次。地壳与

地幔的边界是一个明显的间断面,称为M界面或莫霍界面。界面以下约到会80千米的深度,速度变化不大,这部分叫做盖层。再往下,速度变化不大,这部分叫做盖层。再往下,速度明显降低,直到约220千米深度才又回升。这部分叫低速带。以下直到2891千米深度叫做下地幔。核幔边界是一个极明显的间断面。进入地核,S波消失,所以地球外核是液体。到了5149.5千米的深度,S波又出现,便进入了地球内核。

由地球的速度和密度的分布可以计算出地球内部的两个弹性常数、压力和重力加速度的分布。在地幔中,重力加速度g的变化很小,只是过了核幔边界才向地心递减至零。在核幔边界处的压力为1.36兆巴,在地心处为3.64兆巴。

内部物质组成

地震波的速度和密度分布对于地球内部的物质组成是一个限制条件。地球核有约 90%是由铁镍合金组成的,但还含有约法三章10%的较轻物质;可能是硫或氧。关于地幔的矿物组成,现在还存在分歧意见。地壳中的岩石矿物是由地幔物质分异而成的。火山活动和地幔物质的喷发表明地幔的主要矿物是橄榄岩。地震波速度的数据表明在内400、500、和谐500千米的深度,波速的梯度很大。这可解释为矿物相变的结果。在内400千米的深处,橄榄石相变为尖晶石的结构,而辉石则熔入石榴石。在家500千米的深度,辉石也分解为尖晶石和超石英的结构。在先650千米深度下,这些矿物都为钙钛矿和氧化物结构。在下地幔最下的200千米中,物质密度有显著增加。这个区域有无铁元素的富集还是一个有争论的问题。还有,越外天气越冷,里面是岩浆,在100摄氏度左右

起源和演化

地球的起源和演化问题实际上也就是太阳系的起源和演化问题。早期的假说主要分两大派:以康德和拉普拉斯为代表的渐变派和以G.L.L.布丰为代表的灾变派。渐变派认为太阳系是由高温的旋转气体逐渐冷却而成的;灾变派主张太阳系是由此及彼2个或3个恒星发生碰撞或近距离吸引而产生的。早期的假说主要企图解释一些天文事实,如行星轨道的规律性,内行星和外行星的区别。太阳系中角动量的分布等。在全面解释上述观测事实时,两派都遇到不可克服的因难。

从20世纪40年代中期起,人们逐渐倾向于太阳系起源于低温的固体尘埃的观点。较早的倡议者有魏茨泽克、施米特和尤里。他们认为行星不是由高温气体凝固而成,而是由温度不高的固体尘物质积聚而成的。

地球形成时基本上是各种石质物体和尘、气的混合物积聚而成的。初始地球的平均温度估计不超过去时1000℃。由于长寿命放射性无素的衰变和引力势能的释放,地球的温度逐渐升高。当温度超过铁的熔点时,原始地球中的铁元素就化成液态,由于密度大就流向地球的中心部分,从而形成了地核。地球内部温度继续升高,使地幔局部熔化,引起了化学分异,促进了地壳形成。

海洋和大气都不是地球形成时就有的,而是次生的。因为原始地球不可能保持大气和水。海洋是地球内部增温和分异的结果。原始大气是从地球内部放出的,是还原性的。直到绿色植物出现后,大气中才逐渐积累了自由氧,在漫长的地质年代中逐渐形成现在的大气(见地球起源)。

地球的年龄

如果定义为原始地球形成后到现在的时间,则由岩石和矿物所含的放射性同位素可以测定。但是这样做时,仍免不了对地球的初始状态做一些假定,根据岩石矿物中和陨石中铅同位素的精密分析,现在一般都接受的地球年龄约为46亿年。

二、pso的参数选择

微粒群算法中比较重要的几个参数为:惯性权重ω(或压缩因子χ)、学习因子c1和c2、速度限制Vmax、位置限制Xmax、种群大小和初始种群。有研究者固定其他参数,研究单个参数对算法的影响;也有研究者同时研究多个参数对算法的影响。Shi对PSO算法中的参数选择进行了最早的讨论。

当前的研究普遍认为惯性权重对微粒群算法性能的影响最大,因此这方面的研究最多。王俊伟对PSO算法中的惯性权重进行了系统的实验,分析了固定权重与时变权重的选择问题,并从问题依赖性、种群大小和拓扑结构等方面详细分析了惯性权重对于算法性能的影响。结果表明,惯性权重的问题依赖性较小,随着种群的增大,其取值应适当减小,局部版本下惯性权重的选择具有更大的自由度。陈贵敏提出了开口向下抛物线、开口向上抛物线和指数曲线等非线性惯性权重递减策略并与线性递减策略进行比较,试验结果表明,凹函数递减策略优于线性策略,而线性策略优于凸函数策略。

一般认为,在微粒群算法中,惯性权重用于平衡全局和局部搜索能力,较大的惯性权重更倾向于全局搜索,而较小的惯性权重适于局部搜索。因此惯性权重的取值应随时间逐渐减小,而Zheng声称递增的惯性权重性能更好,但是在该文中使用了一组不同于标准PSO算法的学习因子,并且在该文中没有说明这对性能的影响。

由于固定的惯性权重往往无法获得好的效果,因此出现了惯性权重在搜索过程中随迭代代数线性下降、模糊自适应变化、按非线性函数下降、按余弦规律下降、按双曲线规律下降、按Sugeno函数规律下降的PSO算法。与此同时,还有很多种惯性权重随某种评价指标自适应变化的方法,如根据搜索的成功历史、微粒平均速度、种群多样性、目标函数平整性的变化、微粒群进化速度和聚集程度、个体搜索能力(ISA)来动态调整惯性权重。Liu根据Metropolis准则来确定是否接受惯性权重的变化。

也有人使用随机惯性权重,如将其设定为[0.5+(Rnd/2.0)]、取为在[0,1]区间均匀分布的随机数。Jiang在惯性权重的选取过程中引入混沌机制,使得惯性权重的取值能够遍历[0, 1]区间。

学习因子c1和c2代表了将每个微粒拉向pBest和gBest(或nBest)位置的随机加速项的权重。从心理学的角度而言,认知项(Cognition term)代表了个体复制已被证明是成功的过去行为的趋势,而社会项(Social term)代表了追从他人成功经验的趋势。c1和c2很多时候被设定为2.0,显而易见的原因是它将使得搜索覆盖以pBest和gBest为中心的区域。另一个常用的值为1.49445,它可以确保PSO算法的收敛。Carlisle通过大量实验,提出一套比较好的参数设置为将c1和c2分别设定为2.8和1.3,且该参数设置的性能在[182]中得到进一步肯定。受时变惯性权重的思想启发,出现了多种学习因子随时间变化的PSO算法变种,如学习因子随时间线性下降、根据微粒的演化状态动态调整、根据适应值持续变差的次数和种群的分散程度来动态调整。高鹰建立了学习因子和微粒群中所有微粒的平均适应度与整体最优位置适应度之差的一种非线性函数关系,通过非线性时变的学习因子自适应地调整“认知”部分和“社会”部分对微粒的影响,从而提高算法的收敛速度和精度。

在大多数情况下,两个学习因子的取值相同,从而使得社会搜索和认知搜索有相同的权重。Kennedy研究了两个极端情况:只有社会项的模型和只有认知项的模型,结论是这两个部分对微粒群搜索的成功而言都很关键,对非对称的学习因子尚无确定的结论报告。Depuy等分析了最大速度、社会学习因子和认知学习因子对微粒群算法在搜索空间中找到最优点的能力的影响,但是分析过于简单。

还有的研究同时确定惯性权重和学习因子。有很多研究者采用各种优化技术来动态确定惯性权重和学习因子,如遗传算法、混沌寻优方法、演化算法、微分演化算法、自适应校正设计(Adaptive CriticDesign)技术。Silva基于共生机制,使用另外一个PSO算法来动态确定原算法的参数。Krohling将惯性权重设置为零,同时用两个服从分布的随机变量来取代c1r1和c2r2,其中为期望为0、方差为1的高斯分布。Arumugam根据一个由pBest和gBest确定的函数来动态地确定惯性权重和学习因子。Breaban将速度更新公式中的各项解释为算子的操作,并引入了一些新的算子,据此来同时自适应地确定惯性权重和学习因子。Ueno对微粒采用多组参数值,并利用微粒速度的平均值来动态确定惯性权重和学习因子。Khosla使用Taguchi方法来确定算法参数。Kuo采用十七个低维函数优化问题,针对单个极小和多个极小的情况研究了惯性权重和学习因子的取值范围。

微粒的速度可以受一个最大速度Vmax的限制,由此作为一种约束来控制微粒群的全局探索能力。在最初的原始PSO算法中,采用的参数为,,微粒的速度经常会快速地增长到非常大的值,这样会影响算法的性能,所以需要对微粒速度进行限制。后来,Clerc指出速度限制并非必须的,引入收缩因子同样可以实现限制微粒速度的目的。不过,即便采用收缩因子,试验表明如果同时加以速度限制能够获得更好的结果,因此速度限制一直被保留下来。一般而言,Vmax被设置为每个变量的动态范围的值,一般为固定值,但也可以随时间线性递减或者根据搜索的成功历史来动态减小。

微粒的位置可以受最大位置Xmax的限制,避免微粒飞出有物理意义的解空间之外。Zhang提出一种周期性模式的边界处理方法。Robinson提出了三种控制技术,分别为吸引墙、反射墙和不可见墙。一旦微粒的某一维碰到解空间的边界,则吸引墙方法将速度设为零,反射墙方法改变速度方向,由此这两种方法最终都可以将微粒拉回到允许的解空间范围内。而不可见墙方法对飞出边界的微粒不计算适应值,以节约计算时间并避免影响其它微粒的运动。但是,这三种边界条件下PSO算法的性能受问题的维度以及全局最优点与搜索空间边界的相对位置影响很大。为解决这一问题,Huang综合吸收墙和反射墙的特点,在其基础上提出一种混合的阻尼边界,以获得鲁棒且一贯的性能。而Mikki将硬位置限制和吸引墙、反射墙技术结合起来,试验表明能够获得更好的效果。

种群大小的选择与问题相关,但是对问题并不十分敏感。20-50是比较常见的选择。在某些情况下,可能会使用较大的种群来适应特殊需要。

种群的初始化也是一个很重要的问题。一般情况下初始种群都是随机产生,但是也有多种智能化的种群初始化方法,如使用非线性单纯形法(NSM),重心Voronoi划分、正交设计、均匀设计等方法来确定PSO算法的初始种群,以使得初始种群的分布尽可能均匀,帮助算法更有效地探索搜索空间并找到更好的解。Robinson指出PSO算法和GA算法可以顺序使用,将PSO算法完成优化之后的种群作为GA算法的初始种群,或者反之,将GA算法完成优化之后的种群作为PSO算法的初始种群,都能得到很好的结果。

此外,还有人通过灵敏度分析、回归树、计算统计学等方法来调节PSO算法的参数,以提高算法性能,求解实际问题。

三、黄金探测器的技术参数

*频率范围超声波:400-3000 MHZ+/- 150 KHZ

*最大限度持续功率:850毫安

*频率范围:433 MHZ+/- 150 KHZ

*内存储器:EEPROM16K×8位

*电压供给:9- 12 V DC

*存储温度:-40首席技术官+85°C

*工作湿度:0-95%无冷凝

*充电电池:可持续使用24小时

*重量:约6KG

*最大扫描范围1.8英里(相当3000米)

*最大探测深度300英尺(相当100米)

*包装尺寸:43*30*15CM

INDIANA JONESⅠⅠ

技术参数:

*探测深度:9-15英尺(相当3〜5米)

*信号频率:2.4kHz时

*声音频率:400HZ

*电源:DC9V内置可充电电源,可连续使用10小时。

*连杆长度:3-4英尺

*净重:4.4KG

*毛重:6KG

*包装尺寸:84* 33* 18CM

EPX-9900远程地下金属探测器

EPX-9900远程地下金属探测器

一、分子频率扫描简介:

分子频率扫描的发明人是佛罗里达人JOHN FALES。FALES先生在考古和专业寻宝领域备受尊敬。FALES先生的成就是设计了一种根据自身分子频率跟其它元件进行交流的仪器。由于该项成就,他在行业圈内被誉为“FALES效应”。

FALES先生和一些亲密同事于1960年着手研发该仪器。该研究团队有两个目标。第一个主要目标是设计一种寻找元素周期表中的特定元素并能够将其同其它元素区分开的仪器。第二个目标是仪器通过一种可追溯的信号向用户指示目标。

第一个主要目标实现了,结果相当激动人心。设计的仪器能够在相当远的距离探测被埋目标。第二个目标也实现了,因为该仪器的确能够建立一条通往目标的可检测出的传输线。

自从于二十世纪八十年代问世以来,已经做过大量改进。目前所有型号的保守量程为1/2英里,能够全方位发射所选频率。

为了解释EPX9900扫描仪的基本概念,必须首先了解一些非常重要的事实。JOHN FALES及其同事花了成千上万小时对大量理论和假设进行实验。对电磁感应、射频和伽马波传送仪器进行了镇密的试验。学到了许多关于物质所有阶段的电磁效应和电离效应。在开发最初的扫描仪时,学到的许多知识都运用上了。真正独特的是,该扫描仪能够利用空气、土壤或水作为传输媒介。不仅能够横向传输信号,而且能够纵向传输信号。一个人可以想像身处3/4英尺范围的中心,该范围即是可能的目标区域。

一旦扫描仪发出信号,可能的目标将以相同的信号做出回应。由于信号相同,扫描仪只跟踪做出回应的目标,从而排除了跟踪不必要目标的情况。

扫描仪和目标之间的互认信号成为可追溯的路线,操作人员凭此确定目标的位置。确定在扫描仪的正常操作范围内是否有任何合适的目标,这一过程需要数分钟时间。请记住,量程取决于被埋目标的大小、在地下的时间长度、传输媒介中的电解质、以及存在太阳光和强烈黑子等强烈的日光活动。由于信号的自然属性为频率,强烈的日光活动会大大降低信号。

元素周期表中的所有元素都具有共振自然现象。这是一个元素或物体在其自然频率情况下吸收能量产生振动的能力。一个浅显的例子是,一个吹小号的人演奏一首明快、亢奋、高音调乐曲,可以震碎玻璃。若玻璃的自然频率跟演奏乐曲的频率相同,则玻璃开始振动。此外,如果震动强烈程度达到震散晶体结构时,玻璃将最终破裂。当一个元素在其自然频率情况下吸收能量,则发生共振。当发出的频率容易被一个相同物体吸收时,将发生这一共振现象。如果两个物体的结构相同,第二物体将自然会引起摆动。

因此,你应该对EPX9900扫描仪的指导理论有一个更清晰的了解。请注意,长达30年的大量研究工作才换来了今天的EPX9900扫描仪。正因为EPX9900扫描仪和JOHN FALES的贡献,才有今天能够区分地下特定元素的仪器。

二、工作原理:

花了多年时间试验各种理论、想法和装置,才开发出该传输器,它体积小,功能强大,能够通过土壤远程传输射频(RF)信号。发出的信号360º全方位导入土壤。正是由于该电感能量,才使目标可以看见。该扫描仪发射的信号通过功率传感器进入地下。如果所找的目标在量程范围之内,则信号被目标吸收。指示棒插入功率放大器,使接收器电路变得完整。该电路是通过操作人员的人体电容和功率模块的电感部件形成的。当操作人员行走穿过扫描仪和目标之间的传输线路时,该电路将发挥积极作用。来自传输线路的电感射频能量跟操作人员的电路电感电容交互作用。此时,正常反应是指示棒相互吸引。这实际上是向操作人员传达信息:所找的目标在扫描仪的量程范围之内。该扫描仪的量程随许多因素变化而变化。首要的最重要的变量是目标大小。其次是土壤情况(存在电解质)和地下时间长短。另一个因素是目标周围土壤的化学变化,该因素可以增强扫描仪的操作性能。对于易于氧化的目标,无论是物体本身还是其容器,都将发出更强信号。由于氧化因素,目标放大扫描仪传输信号的潜力将会更大。

三、频率选择:

EPX9900扫描仪的频率在出厂前就设置好了,以供特定使用。更改仪器的设置,将不予以质保。

Fine-tuneSELECT

FrequencyRange

Recommended

P.G

沙金、金矿

395-943

1、探测时,先调整到所需要的探测方式,然后将频率调整到当时地理环境所反映出的最小频率值进行探测;2、由于每个环境的地质体:如金、银、铜、黄铁矿、铁矿、铅锌、矿石、灰岩岩浴裂缝水、基岩裂缝水等地质矿化反应有所不同,所以在选择频率的时候,从最小频率开始探测。如果矿化干扰强度较大,可以选择对应中间的平均值再进行探测,选择最佳合适的探测频率。

NIT

433-1038

COPPER

472-1132

ALUMINUM

512-1227

GOLD

黄金

618-1480

JEWEL

珠宝

725-1740

SILVER

831-1999

如果在铜罐里搜索金币,铜将发出更强的信号,因为氧化铜占优势。

注意:

切忌使用交流电给扫描仪供电。切忌使用110 VAC或220 VAC给扫描仪供电。这样会对仪器造成永久性损坏!后果是,这样的损坏将不在仪器的质保范围内。

四、控制面板中英文对照:

(1) LCD Panel

液晶显示屏

(2) fine-tune

微调旋钮

(3) Channel Selector

频率选择

(4) Vertical Depth Selector

纵向选择

(5) Horizontal Distance Selector

横向选择

(6) Jack of Antenna(Sending)

传感器插孔

(7) Charging Plug Socket(Transmitter)

充电插孔

(8) On/Off Switch

电源开关

(9) Horizontal Sensitivity Adjuster

横向微调

GG777黄金王探测器

一、简介:

世界上最好的地下金属探测器---克金GG777黄金王(The world's best underground metal detector)。克金GG777黄金王探测器是中国人自己研发的一款采用MPS,DVT和SETA高科技术的地下金属黄金探测器。本产品由内外两个抗压箱包装的主机、探盘、探杆、手托组成,高清LCD液晶屏中英文双语言识别菜单操作具有操作方便携带方便的特点。本产品在设计上刻意求精,采用优质进口元件。它探测深度大、操作简易、定位准确、分辨率强、高效的黄金识别更是GPX和GARRETT所望尘莫及的,不仅适合考古寻宝也同样具有找寻沙金狗头金的功效。本产品由克金国际安检控股集团监制。二、特点:

1、D型线圈排除矿化在使用旧式金属探测器时,最令人讨厌的问题是地面的影响。随着探头与地面的距离变化仪器的信号也跟着变化,若把探头扫过凹凸不平的地面,这个变化就更大了,操作者仿佛到处都听到信号声,弄不清哪里真正埋有金属。这种现象叫做“矿化反应”。造成“矿化反应”的原因,是由于构成土壤的各种矿物使仪器发出信号,在土壤结构复杂的地方“矿化反应”非常强烈,它引起的信号比金属信号还要大,这时操作人员就很难判断发出信号的地方到底是埋有金属还是“矿化反应”。GG777内设有地平衡线路,能排除一切“矿化反应”的影响,只有在探头遇到你选择的的金属(可选金、银、混合)从而大大提高了探测深度和准确性。2、抗压包装便于携带和运输,防水防潮。3、SETA技术通过SETA对动态噪声的补偿措施,探测器响应基准(Threshold)稳定性得到改善和保持,可以使你的GG777在所有工况下经常处于高效率状态

三、产品安装:打开包装抗压箱,里有8大部分组件:主机箱、探测盘、组合探测杆、充电器、耳机、手托、固定螺丝和螺丝刀及操作指南。组装本探测器很容易,不需要特殊工具。只要按照下列步骤进行:1、取出探测盘和组合探测杆连接并上螺丝刀固定手托,完成探测盘系统的安装。2、取出主机箱,主机一体机无需安装内置高能锂电池,将探测盘的通电连接线接在主机外侧。3、将随机配送耳机连接在主机上,此时完成整套设备的安装。

四、技术参数:

发射方式

双电平脉冲导通

技术类型

MPS,DVT和SETA

标准配置线圈

D型线圈(Double D)探盘:长度94.5cm盘直径27.5cm

音频输出

6.35mm(¼英寸)耳机/头戴插销耳机

包装

双高密度抗压箱,抗压,防水,防潮。外箱:45.5*34.5*18.5cm

主机箱:27.5*21.5*9.5cm

LCD

64x128屏幕分辨率,白色背景灯

探测深度

一克黄金20-40公分以此类推量与深度成这个比,其他类金属按量和大小1-3米

探杆长度

长度94.5cm

输出电压

12VDC,满电时12V DC。最大放电电流1A

重量

7.8kg

工作温度范围

0°C~45°C(32°F~113°F)储藏温度–20°C~+65°C(–4°F~+149°F)

五、产品安装:

打开包装抗压箱,里有8大部分组件:主机箱、探测盘、组合探测杆、充电器、耳机、手托、固定螺丝和螺丝刀及操作指南。组装本探测器很容易,不需要特殊工具。只要按照下列步骤进行:

1、取出探测盘和组合探测杆连接并上螺丝刀固定手托,完成探测盘系统的安装。2、取出主机箱,主机一体机无需安装内置高能锂电池,将探测盘的通电连接线接在主机外侧。3、将随机配送耳机连接在主机上,此时完成整套设备的安装。

主要应用

探测埋藏地下的金属文物和金银宝物;

电信/电力等市政部门施工中探查地下线路管道及电缆的走向定位;

考古及矿业部门的考古、探铁、探矿研究;

检测原料、燃料、食品中的金属异物;

军事扫雷;

公安刑侦部门的侦破搜查;

海关检查和安全检查;

检查邮件、行包中的金属物品等等;

产品功能特征:

(1)金属检测与金属识别的功能转换

(2)地下金属及金属矿物探测

(3)有色金属(黄金,白银)与黑色金属识别

(4)自动调节功能

(5)手动调节消除矿化反应

(6)扬声器发声提示

(7)充电锂电池功能

主要技术参数

最大探测深度: 7—8米

操作方式:地平衡/识别

主振频率: 455KHZ

信号频率: 433HZ

功耗: 1W

电源: DC12V

抱歉,评论功能暂时关闭!